DESCRIPTION

The Xicor X24C45 is a serial 256 bit NOVRAM featuring a static RAM configured 16 x 16, overlaid bit-by-bit with a nonvolatile E²PROM array. The X24C45 is fabricated with Xicor’s Advanced CMOS Floating Gate technology.

The Xicor NOVRAM design allows data to be transferred between the two memory arrays by means of software commands or external hardware inputs. A store operation (RAM data to E²PROM) is completed in 5ms or less and a recall operation (E²PROM data to RAM) is completed in 2µs or less.

The X24C45 also includes the AUTOSTORE feature, a user selectable feature that automatically performs a store operation when VCC falls below a preset threshold.

Xicor NOVRAMs are designed for unlimited write operations to RAM, either from the host or recalls from E²PROM and a minimum 1,000,000 store operations. Inherent data retention is specified to be greater than 100 years.

FEATURES

- **AUTOSTORE™ NOVRAM** —Automatically Performs a Store Operation Upon Loss of VCC
- Single 5 Volt Supply
- Ideal for use with Single Chip Microcomputers —Minimum I/O Interface —Serial Port Compatible (COPS™, 8051) —Easily Interfaced to Microcontroller Ports
- Software and Hardware Control of Nonvolatile Functions
- Auto Recall on Power-Up
- TTL and CMOS Compatible
- Low Power Dissipation —Active Current: 10mA —Standby Current: 50µA
- 8-Lead PDIP and 8-Lead SOIC Packages
- High Reliability —Store Cycles: 1,000,000 —Data Retention: 100 Years
PIN DESCRIPTIONS

Chip Enable (CE)
The Chip Enable input must be HIGH to enable all read/write operations. CE must remain HIGH following a Read or Write command until the data transfer is complete. CE LOW places the X24C45 in the low power standby mode and resets the instruction register. Therefore, CE must be brought LOW after the completion of an operation in order to reset the instruction register in preparation for the next command.

Serial Clock (SK)
The Serial Clock input is used to clock all data into and out of the device.

Data In (DI)
Data In is the serial data input.

Data Out (DO)
Data Out is the serial data output. It is in the high impedance state except during data output cycles in response to a READ instruction.

AUTOSTORE Output (AS)
AS is an open drain output which, when asserted indicates \( V_{CC} \) has fallen below the AUTOSTORE threshold \( (V_{ASTH}) \). AS may be wire-ORed with multiple open drain outputs and used as an interrupt input to a microcontroller or as an input to a low power reset circuit.

RECALL
RECALL LOW will initiate an internal transfer of data from \( \text{E}^2\text{PROM} \) to the RAM array.

PIN CONFIGURATION

PIN NAMES

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>Chip Enable</td>
</tr>
<tr>
<td>SK</td>
<td>Serial Clock</td>
</tr>
<tr>
<td>DI</td>
<td>Serial Data In</td>
</tr>
<tr>
<td>DO</td>
<td>Serial Data Out</td>
</tr>
<tr>
<td>RECALL</td>
<td>Recall Input</td>
</tr>
<tr>
<td>AS</td>
<td>AUTOSTORE Output</td>
</tr>
<tr>
<td>( V_{CC} )</td>
<td>+5V</td>
</tr>
<tr>
<td>( V_{SS} )</td>
<td>Ground</td>
</tr>
</tbody>
</table>
DEVICE OPERATION

The X24C45 contains an 8-bit instruction register. It is accessed via the DI input, with data being clocked in on the rising edge of SK. CE must be HIGH during the entire data transfer operation.

Table 1 contains a list of the instructions and their operation codes. The most significant bit (MSB) of all instructions is a logic one (HIGH), bits 6 through 3 are either RAM address bits (A) or don’t cares (X) and bits 2 through 0 are the operation codes. The X24C45 requires the instruction to be shifted in with the MSB first.

After CE is HIGH, the X24C45 will not begin to interpret the data stream until a logic “1” has been shifted in on DI. Therefore, CE may be brought HIGH with SK running and DI LOW. DI must then go HIGH to indicate the start condition of an instruction before the X24C45 will begin any action.

In addition, the SK clock is totally static. The user can completely stop the clock and data shifting will be stopped. Restarting the clock will resume shifting of data.

RCL and RECALL

Either a software RCL instruction or a LOW on the RECALL input will initiate a transfer of EEPROM data into RAM. This software or hardware recall operation sets an internal “previous recall” latch. This latch is reset upon power-up and must be intentionally set by the user to enable any write or store operations. Although a recall operation is performed upon power-up, the previous recall latch is not set by this operation.

WRDS and WREN

Internally the X24C45 contains a “write enable” latch. This latch must be set for either writes to the RAM or store operations to the EEPROM. The WREN instruction sets the latch and the WRDS instruction resets the latch, disabling both RAM writes and EEPROM stores, effectively protecting the nonvolatile data from corruption. The write enable latch is automatically reset on power-up.

STO

The software STO instruction will initiate a transfer of data from RAM to EEPROM. In order to safeguard against unwanted store operations, the following conditions must be true:

• STO instruction issued.
• The internal "write enable" latch must be set (WREN instruction issued).
• The “previous recall” latch must be set (either a software or hardware recall operation).

Once the store cycle is initiated, all other device functions are inhibited. Upon completion of the store cycle, the write enable latch is reset. Refer to Figure 4 for a state diagram description of enabling/disabling conditions for store operations.

### TABLE 1. INSTRUCTION SET

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Format, $i_2$ $i_1$ $i_0$</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRDS (Figure 3)</td>
<td>1XXXX000</td>
<td>Reset Write Enable Latch (Disables Writes and Stores)</td>
</tr>
<tr>
<td>STO (Figure 3)</td>
<td>1XXXX001</td>
<td>Store RAM Data in EEPROM</td>
</tr>
<tr>
<td>ENAS</td>
<td>1XXXX010</td>
<td>Enable AUTOSTORE Feature</td>
</tr>
<tr>
<td>WRITE (Figure 2)</td>
<td>1AAAA011</td>
<td>Write Data into RAM Address AAAA</td>
</tr>
<tr>
<td>WREN (Figure 3)</td>
<td>1XXXX100</td>
<td>Set Write Enable Latch (Enables Writes and Stores)</td>
</tr>
<tr>
<td>RCL (Figure 3)</td>
<td>1XXXX101</td>
<td>Recall EEPROM Data into RAM</td>
</tr>
<tr>
<td>READ (Figure 1)</td>
<td>1AAAA11X</td>
<td>Read Data from RAM Address AAAA</td>
</tr>
</tbody>
</table>

X = Don’t Care
A = Address

3633 PGM T11
WRITE
The WRITE instruction contains the 4-bit address of the word to be written. The write instruction is immediately followed by the 16-bit word to be written. CE must remain HIGH during the entire operation. CE must go LOW prematurely (after the instruction but before 16 bits of data are transferred), the instruction register will be reset and the data that was shifted-in will be written to RAM.

If CE is kept HIGH for more than 24 SK clock cycles (8-bit instruction plus 16-bit data), the data already shifted-in will be overwritten.

READ
The READ instruction contains the 4-bit address of the word to be accessed. Unlike the other six instructions, I_0 of the instruction word is a “don’t care”. This provides two advantages. In a design that ties both DI and DO together, the absence of an eighth bit in the instruction allows the host time to convert an I/O line from an output to an input. Secondly, it allows for valid data output during the ninth SK clock cycle.

D0, the first bit output during a read operation, is truncated. That is, it is internally clocked by the falling edge of the eighth SK clock; whereas, all succeeding bits are clocked by the rising edge of SK (refer to Read Cycle Diagram).

LOW POWER MODE
When CE is LOW, non-critical internal devices are powered-down, placing the device in the standby power mode, thereby minimizing power consumption.

AUTOSTORE Feature
The AUTOSTORE instruction (ENAS) sets the “AUTOSTORE enable” latch, allowing the X24C45 to automatically perform a store operation when V_CC falls below the AUTOSTORE threshold (V_ASTH).

WRITE PROTECTION
The X24C45 provides two software write protection mechanisms to prevent inadvertent stores of unknown data.

Power-Up Condition
Upon power-up the “write enable” and “AUTOSTORE enable” latches are in the reset state, disabling any store operation.

Unknown Data Store
The “previous recall” latch must be set after power-up. It may be set only by performing a software or hardware recall operation, which assures that data in all RAM locations is valid.

SYSTEM CONSIDERATIONS
Power-Up Recall
The X24C45 performs a power-up recall that transfers the E²PROM contents to the RAM array. Although the data may be read from the RAM array, this recall does not set the “previous recall” latch. During this power-up recall operation, all commands are ignored. Therefore, the host should delay any operations with the X24C45 a minimum of tPUR after V_CC is stable.
Figure 1. RAM Read

![Diagram of RAM Read]

*Bit 8 of Read Instructions is Don’t Care

Figure 2. RAM Write

![Diagram of RAM Write]

Figure 3. Non-Data Operations

![Diagram of Non-Data Operations]
Figure 4. X24C45 State Diagram
ABSOLUTE MAXIMUM RATINGS*
Temperature under Bias .................. –65°C to +135°C
Storage Temperature ...................... –65°C to +150°C
Voltage on any Pin with
Respect to VSS ............................. –1V to +7V
D.C. Output Current .......................... 5mA
Lead Temperature
(Soldering, 10 seconds) .................... 300°C

COMMENT
Stresses above those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and the functional operation of
the device at these or any other conditions above those
indicated in the operational sections of this specification is
not implied. Exposure to absolute maximum rating condi-
tions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>0°C</td>
<td>+70°C</td>
</tr>
<tr>
<td>Industrial</td>
<td>–40°C</td>
<td>+85°C</td>
</tr>
<tr>
<td>Military</td>
<td>–55°C</td>
<td>+125°C</td>
</tr>
</tbody>
</table>

Supply Voltage | Limits
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X24C45</td>
<td>5V ±10%</td>
</tr>
</tbody>
</table>

D.C. OPERATING CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Limits</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Supply Current (TTL Inputs)</td>
<td>10 mA</td>
<td>SK = 0.4V/2.4V Levels @1MHz, DO = Open, All Other Inputs = Vih</td>
</tr>
<tr>
<td>VCC</td>
<td>Supply Current (During AUTOSTORE)</td>
<td>2 mA</td>
<td>All Inputs = Vih, CE = Vil, DO = Open, Vcc = 4.3V</td>
</tr>
<tr>
<td>VCC</td>
<td>Standby Current (TTL Inputs)</td>
<td>1 mA</td>
<td>DO = Open, CE = Vil, All Other Inputs = Vih</td>
</tr>
<tr>
<td>VCC</td>
<td>Standby Current (CMOS Inputs)</td>
<td>50 μA</td>
<td>DO = Open, CE = Vss, All Other Inputs = Vcc – 0.3V</td>
</tr>
<tr>
<td>IIL</td>
<td>Input Load Current</td>
<td>10 μA</td>
<td>VIN = Vss to Vcc</td>
</tr>
<tr>
<td>ILO</td>
<td>Output Leakage Current</td>
<td>10 μA</td>
<td>VOUT = Vss to Vcc</td>
</tr>
<tr>
<td>VIL(1)</td>
<td>Input LOW Voltage</td>
<td>–1</td>
<td>Vcc + 1 V</td>
</tr>
<tr>
<td>VIH(1)</td>
<td>Input HIGH Voltage</td>
<td>2 VCC</td>
<td>VIH = 4.2mA</td>
</tr>
<tr>
<td>VIL</td>
<td>Output LOW Voltage</td>
<td>0.4 V</td>
<td>IOL = –2mA</td>
</tr>
<tr>
<td>VIL(AS)</td>
<td>Output LOW Voltage (AS)</td>
<td>0.4 V</td>
<td>IOl (AS) = 1mA</td>
</tr>
</tbody>
</table>

ENDURANCE AND DATA RETENTION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endurance</td>
<td>100,000</td>
<td>Data Changes Per Bit</td>
</tr>
<tr>
<td>Store Cycles</td>
<td>1,000,000</td>
<td>Store Cycles</td>
</tr>
<tr>
<td>Data Retention</td>
<td>100</td>
<td>Years</td>
</tr>
</tbody>
</table>

CAPACITANCE  
\[ T_A = +25^\circ C, f = 1\text{MHz}, V_{CC} = 5V \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Max.</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUT(2)</td>
<td>Output Capacitance</td>
<td>8</td>
<td>pF</td>
<td>VOUT = 0V</td>
</tr>
<tr>
<td>Cin(2)</td>
<td>Input Capacitance</td>
<td>6</td>
<td>pF</td>
<td>VIN = 0V</td>
</tr>
</tbody>
</table>

Notes:  
(1) VIL min. and VIH max. are for reference only and are not tested.  
(2) This parameter is periodically sampled and not 100% tested.
EQUIVALENT A.C. LOAD CIRCUIT

A.C. CONDITIONS OF TEST

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Pulse Levels</td>
<td>0V</td>
<td>3V</td>
<td></td>
</tr>
<tr>
<td>Input Rise and Fall Times</td>
<td>10ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input and Output Timing Levels</td>
<td>1.5V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.C. CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)

Read and Write Cycle Limits

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSK(3)</td>
<td>SK Frequency</td>
<td>1</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>tSKH</td>
<td>SK Positive Pulse Width</td>
<td>400</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tSKL</td>
<td>SK Negative Pulse Width</td>
<td>400</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tDS</td>
<td>Data Setup Time</td>
<td>400</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tDH</td>
<td>Data Hold Time</td>
<td>80</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tPD1</td>
<td>SK to Data Bit 0 Valid</td>
<td>400</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tPD</td>
<td>SK to Data Valid</td>
<td>375</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tZ</td>
<td>Chip Enable to Output High Z</td>
<td>1</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>tCES</td>
<td>Chip Enable Setup</td>
<td>800</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tCEH</td>
<td>Chip Enable Hold</td>
<td>350</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tCDS</td>
<td>Chip Deselect</td>
<td>800</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

POWER-UP TIMING

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>tPUR(4)</td>
<td>Power-up to Read Operation</td>
<td>200</td>
<td>µs</td>
</tr>
<tr>
<td>tPUW(4)</td>
<td>Power-up to Write or Store Operation</td>
<td>5</td>
<td>ms</td>
</tr>
</tbody>
</table>

Notes:
(3) SK rise and fall times must be less than 50ns.
(4) tPUR and tPUW are the delays required from the time VCC is stable until the specified operation can be initiated. These parameters are periodically sampled and not 100% tested.
Write Cycle

Read Cycle
X24C45

NONVOLATILE OPERATIONS

<table>
<thead>
<tr>
<th>Operation</th>
<th>RECALL</th>
<th>Software Instruction</th>
<th>Write Enable Latch State</th>
<th>Previous Recall Latch State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Recall</td>
<td>0</td>
<td>NOP(^{(5)})</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Software Recall</td>
<td>1</td>
<td>RCL</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Software Store</td>
<td>1</td>
<td>STO</td>
<td>SET</td>
<td>SET</td>
</tr>
</tbody>
</table>

ARRAY RECALL LIMITS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(_{RCC})</td>
<td>Recall Cycle Time</td>
<td>2</td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>t(_{RCP})</td>
<td>Recall Pulse Width(^{(6)})</td>
<td>500</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t(_{RCZ})</td>
<td>Recall to Output in High Z</td>
<td>500</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Recall Timing

SOFTWARE STORE CYCLE LIMITS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.(^{(7)})</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(_{ST})</td>
<td>Store Time After Clock 8 of STO Command</td>
<td>2</td>
<td>5</td>
<td>ms</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(5) NOP designates when the X24C45 is not currently executing an instruction.
(6) Recall rise time must be \(<10\mu s\).
(7) Typical values are for \(T_A = 25^\circ C\) and nominal supply voltage.
**AUTOSTORE Cycle Limits**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>tASTO</td>
<td>AUTOSTORE Cycle Time</td>
<td>5 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VASTH</td>
<td>AUTOSTORE Threshold Voltage</td>
<td>4.0</td>
<td>4.3</td>
<td>V</td>
</tr>
<tr>
<td>VASEND</td>
<td>AUTOSTORE Cycle End Voltage</td>
<td>3.5</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

**AUTOSTORE Cycle Timing Diagrams**

![AUTOSTORE Cycle Timing Diagrams](image-url)

**SYMBOL TABLE**

<table>
<thead>
<tr>
<th>WAVEFORM</th>
<th>INPUTS</th>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must be steady</td>
<td>Will be steady</td>
<td></td>
</tr>
<tr>
<td>May change from LOW to HIGH</td>
<td>Will change from LOW to HIGH</td>
<td></td>
</tr>
<tr>
<td>May change from HIGH to LOW</td>
<td>Will change from HIGH to LOW</td>
<td></td>
</tr>
<tr>
<td>Don't Care: Changes Allowed</td>
<td>Changing: State Not Known</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>Center Line is High Impedance</td>
<td></td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

8-LEAD PLASTIC DUAL IN-LINE PACKAGE TYPE P

NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)
PACKAGING INFORMATION

8-LEAD PLASTIC SMALL OUTLINE GULL WING PACKAGE TYPE S

NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)
**LIMITED WARRANTY**

Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and prices at any time and without notice.

Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, licenses are implied.

**US. PATENTS**

Xicor products are covered by one or more of the following U.S. Patents: 4,263,664; 4,274,012; 4,300,212; 4,314,265; 4,326,134; 4,393,481; 4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846; 4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829,482; 4,874,967; 4,883,976. Foreign patents and additional patents pending.

**LIFE RELATED POLICY**

In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error detection and correction, redundancy and back-up features to prevent such an occurrence.

Xicor’s products are not authorized for use as critical components in life support devices or systems.

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
NOTES
U.S. SALES OFFICES

Corporate Office
Xicor Inc.
1511 Buckeye Drive
Milpitas, CA 95035
Phone: 408/432-8888
Fax: 408/432-0640
E-mail: info@smtpgate.xicor.com

Northeast Region
Xicor Inc.
1344 Main Street
Waltham, MA 02154
Phone: 617/899-5510
Fax: 617/899-6808
E-mail: xicor-ne@smtpgate.xicor.com

Southeast Region
Xicor Inc.
100 E. Sybelia Ave.
Maitland, FL 32751
Phone: 407/740-8282
Fax: 407/740-8602
E-mail: xicor-se@smtpgate.xicor.com

Mid-Atlantic Region
Xicor Inc.
50 North Street
Danbury, CT 06810
Phone: 203/743-1701
Fax: 203/794-9501
E-mail: xicor-ma@smtpgate.xicor.com

North Central Region
Xicor Inc.
810 South Bartlett Road
Suite 103
Streamwood, IL 60107
Phone: 708/372-3200
Fax: 708/372-3210
E-mail: xicor-nc@smtpgate.xicor.com

South Central Region
Xicor Inc.
11884 Greenville Ave.
Suite 102
Dallas, TX 75243
Phone: 214/669-2022
Fax: 214/644-5835
E-mail: xicor-sc@smtpgate.xicor.com

Southwest Region
Xicor Inc.
4100 Newport Place Drive
Suite 710
Newport Beach, CA 92660
Phone: 714/752-8700
Fax: 714/752-8634
E-mail: xicor-sw@smtpgate.xicor.com

Northwest Region
Xicor Inc.
2700 Augustine Drive
Suite 219
Santa Clara, CA 95054
Phone: 408/292-2011
Fax: 408/980-9478
E-mail: xicor-nw@smtpgate.xicor.com

INTERNATIONAL SALES OFFICES

EUROPE
Northern Europe
Xicor Ltd.
Grant Thornton House
Witan Way
Witney
Oxford OX8 6FE
UK
Phone: (44) 1933.700544
Fax: (44) 1933.700533
E-mail: xicor-uk@smtpgate.xicor.com

Central Europe
Xicor GmbH
Technopark Neufelder
Bretonischer Ring 15
85630 Grasbrunn bei Muenchen
Germany
Phone: (49) 8946.10080
Fax: (49) 8946.05472
E-mail: xicor-gm@smtpgate.xicor.com

ASIA/PACIFIC
Japan
Xicor Japan K.K.
Suzuki Building, 4th Floor
1-6-8 Shinjuku, Shinjuku-ku
Tokyo 160, Japan
Phone: (81) 3322.52004
Fax: (81) 3322.52319
E-mail: xicor-jp@smtpgate.xicor.com

Mainland China
Taiwan/Hong Kong
Xicor Inc.
4100 Newport Place Drive
Suite 710
Newport Beach, CA 92660
Phone: 714/752-8700
Fax: 714/752-8634
E-mail: xicor-sw@smtpgate.xicor.com

Singapore/Malaysia/India
Xicor Inc.
2700 Augustine Drive
Suite 219
Santa Clara, CA 95054
Phone: 408/292-2011
Fax: 408/980-9478
E-mail: xicor-nw@smtpgate.xicor.com

Korea
Xicor Korea
27th Fl., Korea World Trade Ctr.
159, Samsung-dong
Kangnam Ku
Seoul 135-729
Korea
Phone: (82) 2551.2750
Fax: (82) 2551.2710
E-mail: xicor-ka@smtpgate.xicor.com

( ) = Country Code

Xicor product information is available at:
http://www.xicor.com